文章编号:0253-2239(2001)07-0825-04

瞬态光谱量子分析及其测量

吴宝宁 刘建平 宋一兵 李宇鹏 岳文龙

(西安应用光学研究所国防科工委光学计量一级站,西安710065)

杨利

(北京理工大学机电工程学院,北京 100081)

摘要: 介绍了新近研制的瞬态光谱测量仪,详细分析了瞬态光谱测量中的量子转换过程,进而表述出瞬态光谱信 噪比表达式、图像参数和光电转换量子效率、光电成像有效积分时间和 CCD 光敏面的作用,最后给出了在此理论 指导下的实测光谱曲线。

关键词: 瞬态光谱学;光电成像;CCD探测;量子分析 中图分类号:TH744.1 文献标识码:A

1 引 言

传统的光谱测试仪器,由于采用机械式的波长 扫描技术,无法对超快变化目标瞬间光谱进行采集。 如火炸药的爆炸闪光光谱、导弹尾部火焰的瞬时光 谱、脉冲氙灯的闪光光谱以及各种脉冲激光器的光 谱都无法用传统的光谱仪进行测试。

我国对瞬态光谱测试的研究是从 80 年代后期 开始的,随着列阵元件硅靶摄像管及 CCD 器件研 制和应用技术的进一步发展,瞬态光的空间分布及 光谱测量技术迅速得到发展,各种测量瞬态光源光 谱特性的仪器也相继问世。近几年,由于真空紫外 用于光栅刻线技术的提高以及电子技术的发展为高 分辨率瞬态光谱测试仪器的研制扫除了障碍,得到 了突飞猛近的发展。但是,在瞬态光谱测试方面,理 论落后于实践,为其进一步发展成为瞬态光谱分析 仪器带来了困难,只有对其光电量子转换效率进一 步分析,才能促使瞬态光谱测试进一步发展。

2 瞬态光谱测量系统的组成

2.1 瞬态光谱测量系统原理

瞬态光谱测量系统如图 1 所示,采用光电手段, 通过一次闪光获得光源辐射光谱。具体工作原理 是:被测光源通过分光后,在 CCD 表面成像,进行光 电转换,然后经放大电路放大,被放大的模拟信号再 经过控制系统进行 A/D 转换和数据采集,最后由微 机进行数据处理,通过监测系统输出测试结果(包括 相对光谱功率曲线、色坐标、主波长、色温、色纯度、 显色指数等)。

Fig.1 The principle frame of system for transient spectrum measuring

2.2 瞬态光谱测试光学系统组成

1) 闪光光路系统

闪光光路如图 2 所示。闪光光路为一专用闪耀 光栅摄谱仪。其作用是将从入射狭缝射入的复色光 色散成所需的光谱带,再聚焦到出射狭缝外成像于 探测器的光敏面上。

Fig.2 The picture of flare beam path

2)探测器件

根据所测波长范围的不同,选用光谱响应不同 的 CCD 作为列阵探测器件,同闪光光路配合使用。 探测器件由列阵光电转换器件(CCD),驱动电路和 处理电路三部分组成。其功能是将在光谱面上并行 排列的光谱带转换成为与光谱分布强弱成正比的串 行光电信号输出。

3) 微机系统

微机系统与探测系统之间所用的模数转换电路 须采用程控手段,以便控制进入转换器前放大电路 的放大量,确保模数转换电路在高精确度的中心数 字区进行运转,使强光谱区大电荷数据不会溢出,弱 光谱区小电荷数据能采取多次曝光的办法采集到, 从而得到高精度相对光谱强度的测量结果。

以硬软件手段保证闪光这一高速测量过程的全 自动化操作,用程控手段保证探测器驱动电路、处理 电路、模数转换电路以及光电转换器件的电器元器 件在其性能最佳的高精度区进行运转,确保测量数 据的精度,微机应具备不低于5套测量数据的容量; 微机除承担测量中的全部数据采集处理外,还应配 有提供所测结果曲线和有关数据显示、输出的外部 设备。

3 瞬态光谱测量中光电成像的量子分析

3.1 瞬态谱信号值的产生机理

瞬态光谱测试中的线阵 CCD ,其在有效积分时间内接收到来自两个像元的辐射量子数分别为 n₁

和 n_2 ,这时 CCD 成像系统能否分辨出这两个像元, 取决于 n_1 与 n_2 的差异,这一差异就代表了瞬态光 谱细节的信号。其瞬态光谱信号值可表示为:

$$S = n_1 - n_2$$
. (1)

如取相邻的两个有亮暗差异的像元,像元是边长为 h的正方形, n_1 为亮像元, n_2 为暗像元,其亮度分别 为 L_1 和 L_2 ,且 $L_1 > L_2$,

$$L_1 = \mathrm{d}\Phi (\mathrm{d}\Omega \mathrm{d}A \cos\varphi), \qquad (2)$$

式中, Φ 表示像元发出的光辐射通量, Ω 表示立体角,A表示像元的面积, φ 表示像面法线与探测面法线的交角。则 CCD 成像系统接受来自亮像元的辐射通量为:

$$\Phi = \iiint_{A \ 0}^{\Omega} L_1 \cos\varphi d\Omega ds =$$
$$\int_{A}^{\Phi} \int_{A}^{\Phi} L_1 h^2 2\pi \sin\varphi \cos\varphi d\varphi = \pi L_1 h^2 \sin^2\varphi. (3)$$

如光电转换的量子效率为 η ,有效积分时间为 *t* 取 *Q* 表示每流明光通量在每秒所通过的光子数。 对于白光(取其有标准 A 光源的光谱分布)的 *Q* 值 近似等于 1.3 × 10¹⁶ lm⁻¹ s⁻¹。由此可列出 CCD 成 像系统在有效积分时间内接收亮像元辐射的平均光 子数为:

$$\bar{n}_1 = \pi L_1 h^2 Q t \eta \sin^2 \varphi. \qquad (4)$$

同样过程,可求出 CCD 成像系统在有效积分时间内 接收暗像元辐射的平均光子数为:

$$\bar{n}_2 = \pi L_2 h^2 Q t \eta \sin^2 \varphi. \qquad (5)$$

根据(1)式可知,由 CCD 成像所获得输出的瞬态光 谱信号 *S* 为:

 $S = \overline{n_1} - \overline{n_2} = \pi (L_1 - L_2) h^2 Q \eta \sin^2 \varphi.$ (6) 3.2 CCD 成像所输出的瞬态光谱噪声表达式

关于瞬态光谱的量子噪声,由于它是 CCD 进行 光电转换所固有的量子性而产生的,故不能排除。 这一噪声的产生原因与光子噪声类似。CCD 进行 光电转换的量子产额也符合泊松分布律,即量子产 额的平均值(泊松分布的数学期望)表示光电转换的 量子信号值,量子产额的起伏值(泊松分布的均方 差)表示光电转换的量子噪声值。由于 CCD 成像所 输出的亮暗两个像元都伴随有量子起伏噪声,因此 其差值的起伏噪声可以利用概率公式求得。由(4) 式和(5)式可写出 CCD 成像输出的瞬态光谱噪声 *N* 的表达式:

$$N = \sqrt{\bar{n}_{1} + \bar{n}_{2}} = \sqrt{\pi} (L_{1} + L_{2}) h^{2} Q t \eta \sin^{2} \varphi.$$
(7)

3.3 光电成像输出的瞬态光谱信噪比 光电成像输出的瞬态光谱信噪比为

$$\frac{S}{N} = \sqrt{\frac{\pi h^2 \sin^2 \varphi Q \eta (L_1 - L_2)^2}{L_1 + L_2}} , \qquad (8)$$

用调制度 $C = (L_1 - L_2)(L_1 + L_2)$,平均亮度 L_m = $(L_2 + L_2)/2$ 代入(8)式得:

$$S/N = \sqrt{2\pi h^2} Q t \eta L_m C^2 \sin^2 \varphi$$
. (9)
(9)式即是理想的 CCD 成像所获得输出的瞬态光谱
信噪比公式。如这一信噪比大于接收器所需的阈值
信噪比(S/N)_{min} 时,表明理想的 CCD 成像可以探
侧到当时的瞬态光谱,根据所述条件,其关系式为:

 $\sqrt{2\pi h^2} Q_t \eta L_m C^2 \sin^2 \varphi \ge (S/N)_{min}$. (10) 当(10)式关系成立时,表明瞬态光谱可探测到,反 之,将不能探测。

4 结果与讨论

为便于对(10)式的讨论,设光电成像系统接收 孔径的半径为 r,像元与光电成像系统的间距为 d, 像元对光电成像系统的张角为 a(即图像视角),则 (10)式中的

$$h\sin\varphi \approx h \frac{r}{d} = r \frac{h}{d} = r\alpha$$

分析(10)式可知,公式中有两类参数,第一类参数是表征图像的参数,包括有图像平均亮度 L_m ,图像调制度C,图像视角 α ;第二类参数是表征光电成像系统的参数,包括有光电成像系统的光电转换量

子效率 η ,光电成像的有效积分时间 t 和 CCD 的光 敏面 h^2 ,光谱信噪比与第一类参数和第二类参数都 成正比 ,所以提高任一参数均可提高信噪比。如可 通过提高量子效率 η 、增大积分时间 t、以及扩大 CCD 面积来提高信噪比值。

通过对 CCD 光电成像量子效率的分析,为在瞬态光谱测试的研究过程中,如何提高光电转换的量子效率提供了可靠的理论依据:在强光的情况下如何抑制信号,在弱光的情况下如何放大信号,提高信噪比,从而最终达到提高测量精度的目的。

5 在上述理论指导下测得的几种瞬态 光谱相对能量分布曲线

图 3 所示为两种通过改变电极材料以及氙气压 强后,所测得的脉冲氙灯光谱曲线。其测量条件均 为线阵 CCD 光敏元面积为 14 µm×14 µm,像元数 为2048,光谱采集间隔为0.35 nm,光电成像有效积 分时间为 20 ms。

如图 4 所示为相同炸药激发不同混合比例的 He-Ne 瞬态光谱曲线。其测量条件均为:将爆炸闪 光采用光纤束导入置于安全区的仪器,采用非球面 镜准直,进入如图 2 所示闪光光路,对光在光纤束中 的光谱变化,采用专用软件进行补偿;线阵 CCD 光 敏元面积为 25 µm × 25 µm,像元数为 1024。光谱 采集间隔为 0.73nm,光电成像有效积分时间为 5µs。

Fig. 3 The spectrum of the pulse Xe-lamp

Fig.4 The luminescence spectrum of bomb excitated air

7期

参考文献

- [1]吴宝宁,刘建平,贾福熙等. 瞬态光源辐射特性研究. 照明工程学报,1999,10(2)5~10
 [2]李硕中,贾福熙梁 培等. 瞬态光的光电摄谱测量. 计量学报,1993,14(4)293~296
- [3] Richard L L. Photoelectronic Imaging Devices. New York : Plenum Press, 1971. 66 ~ 80
- [4] 邹异松,刘玉凤,白廷柱.光电成像原理.北京:北京理 工大学出版社,1997.4~9

Quantum Analysis and Measurement for Transient Spectrum

Wu Baoning Liu Jianping Song Yibing Li Yupeng Yue Wenlong

(The First Scale Optical Metrology Station of the Commission of Science, Technology and Industry for National Defence, Xian Institute of Applied Optics, Shananxi, Xi'an 710065)

Yang Li

(College of Mechanical and Electronic Engineering, BeiJing University of Science and Technology, BeiJing 100081) (Received 13 March 2000; revised 9 June 2000)

Abstract: A recently developed Transient spectrum measurement instrument is introduced. Quantum conversion process of transient light spectrum measuring is analysed in detail, and a S/N expression of transient light spectrum, image parameters, electron-optic imaging and effect of CCD lightsensitive surface are described. Finally, the measured spectrum curves are given.

Key words: transient spectrum ; electron-optic imaging ; CCD detection ; quantum analysis